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Kompositkristalls und erm6glicht es, ohne weiteres 
einen Abstand zwischen zwei Atomen verschiedener 
Teilsysteme, deren Koordinaten .gleiche t-Kom- 
ponenten aufweisen, zu berechnen. 

Alle im vorhergehenden erw/ihnten Rechenpro- 
gramme auBer SPCCC sind bereits als Supplemen- 
tary Publication zu den kurzen Ver6ffentlichungen 
(Kato & Onoda, 1991a,b, 1992) hinterlegt worden. 
Ihre revidierte Fassung* sowie das neue Programm* 
sind direkt bei dem Verfasser erh~iltlich. 

Frau Dr M. Onoda danke ich fiir die Anregung zu 
dieser Ver6ffentlichung. 

* Die Quelltexte und Beschreibungen der Programme sind bei 
dem British Library Document Supply Centre (Supplementary 
Publication No. SUP 71689:124 pp.) hinterlegt. Kopien sind 
erh~iltlich durch: The Managing Editor, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 
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Abstract 

Perturbation theory is used to analyse the geometry 
of various diffracted features in large-angle high- 
energy electron diffraction patterns taken in trans- 
mission. Particular attention is paid to smooth 
parabolic features and their straight-line envelopes. 
It is shown that the features lie in positions 
determined by a 'modified Bragg condition' that 
takes account of dynamical interactions in the crys- 
tal. The results have considerable bearing on the 
interpretation of almost identical resonance features 
seen in reflection high-energy electron diffraction. 
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1. Introduction 

In this paper, features are analysed that may be seen 
in just about any 'near-axis' convergent-beam high- 
energy electron diffraction (HEED) pattern. Of most 
interest are smooth parabolas (smoother for strongly 
scattering materials such as platinum than for 
weaker scatterers such as GaAs; these materials are 
used as examples) and the straighter lines that sur- 
round them. Our particular aim is to account for the 
positions and shapes of the features as functions of 
material and zone axis. A distorted-wave Born 
expansion is sufficient to yield our result, which is 
couched in terms of a Bragg condition modified to 
include the effect of dynamical scattering of the 
incident electrons. Much of the argument may 
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equally be based upon the notions of conservation of 
energy and momentum in the diffraction process. 
This is an important point, as our subsidiary aim is 
to pave the way for an explanation of very similar 
'resonance' features seen in off-axis convergent-beam 
reflection HEED (CB-RHEED) patterns (James, 
Bird & Wright, 1994). 

The first detailed observation that the parabolic 
features seen in RHEED are present in transmission 
patterns was made by Lehmpfuhl & Dowell (1986), 
for the rather weak silicon (111) surface. [Since 
RHEED patterns are usually taken at glancing 
angles to a zone axis lying in the plane of the surface, 
the equivalent region in which to look for similar 
features in transmission HEED (THEED) is tilted 
off the same axis, in the same 'surface-normal' direc- 
tion.] Similar observations have been reported by the 
Arizona group, notably by Peng, Cowley & Yao 
(1988) and Yao & Cowley (1989). One common 
feature of these papers is that the T H E E D  patterns 
shown are all off-axis Kossel-M611enstedt patterns. 
Although the features of interest are certainly visible 
in such patterns (and in just about any other pattern 
taken at the correct orientation), the geometry is not 
nearly so clear as in bright-field large-angle 
convergent-beam electron diffraction (LACBED) 
patterns, as introduced by Tanaka, Saito, Ueno & 
Harada (1980). These patterns are produced by over- 
(or under-) focusing a large-angle incident probe and 
using the selected-area aperture to pick out the 
zeroth beam at a position where the (otherwise over- 
lapping) discs are separated. The drawback of the 
overfocusing is that a large flat area of the specimen 
is required, perhaps thousands of hngstr6ms in diam- 
eter. However, the additional feature of the patterns, 
that both image and diffraction information are 
present, makes the search for an acceptable area and 
the interpretation of distortions incurred somewhat 
easier. 

Fig. 1 shows 200 kV bright-field LACBED pat- 
terns taken from close to the Pt[231] and GaAs[116] 
axes. Note that the directions from the left to the 
right of these patterns are [111] and [1T0], respec- 
tively; the vertical deficiency lines are therefore (n-~n) 
and (n~0). These are the least interesting features in 
the patterns but do serve as useful landmarks. The 
similarities between these patterns and CB-RHEED 
patterns at similar orientations have been highlighted 
in a brief report by James, Bird & Wright (1989). 

The rest of the paper is built around the patterns 
in Fig. 1. In §2, a numerical simulation is used to 
establish that straightforward dynamical diffraction 
theory is sufficient to produce the lines of interest in 
the correct places and to provide 'idealized experi- 
mental data' for comparison with the approximate 
theory presented in §3. The reason for moving to an 
approximation method is to extract analytical 

expressions for the conditions necessary to produce 
the smooth parabolas and their envelopes. The 
numerical simulations may then be used to determine 
what, if anything, has been lost in making the 
approximations. The results of the perturbation 
theory, which give an unequivocal explanation of the 
geometry of the patterns, are presented in ~4 and 
discussed in §5, with particular reference to what 
they might tell us about the RHEED case. 

We now run quickly through the fundamentals of 
dynamical theory in order to set up the equations 
that are used later and to introduce our notation. We 
make the forward scattering and projection approxi- 
mations to separate out the very different longitud- 
inal (z) and transverse R = (x,y) behaviours of the 
incident electrons. The basic equation governing the 
fast-electron wavefunction tp as a function of r = 
(R,z) is then (e.g. Howie, 1966; Berry, 1971; Bird, 

(a) 

{b) 

Fig. 1. 200 kV bright-field LACBED patterns taken close to 
(a) the Pt[231] zone axis and (b) the GaAs[116] zone axis. In 
both cases, the zone axis is situated off the left edge of the 
figure, half-way up. 
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1989) 

[ -  172 + U(R)]q~(r) = 2ikOqb/Oz, (1) 

where k is the magnitude of the incident electron 
wave vector, z is the direction of projection and the 
direction of the zone axis off which we tilt; the 
crystal is assumed to be flat and parallel sided, lying 
in the R plane perpendicular to z. Equation (1) is 
exactly analogous to the time-dependent Schrrdinger 
equation, with R the spatial coordinate and z taking 
the place of time - this similarity is exploited in the 
perturbation theory of §3. U(R) is the effective two- 
dimensional 'potential', which is related to the actual 
projected potential V(R) by 

U(R) = (Zymo/~i2)V(R) = Z U G e x p ( i G ' R ) .  (2) 
G 

We have expressed the periodic potential as a sum 
over Fourier coefficients, Uc, where the G represent 
the two-dimensional set of  zero-layer reciprocal- 
lattice vectors. The solutions to (1) are separable in R 
and z and can be expressed in the form of Bloch 
waves, ~(~, each of which has an excitation ampli- 
tude et-'~; 

q~tJ~ = ZC~(K)  exp [i(K + G)" R] exp [ - is(J~(K)z/2k] 
G 

(3a) 

qb= Zeo~q~o~. (3b) 
J 

The Bloch-wave coefficients C~ ~ and transverse 
energies s (j~ are the eigenvectors and eigenvalues, 
respectively, of the many-beam equations 

Z { [ ( K  +G)2--StJ3]t~G,G,+ UG_ G,}C(~% = 0, (4) 
G' 

where K is chosen to match the component of the 
incident wave vector parallel to the specimen sur- 
faces. Finally, the boundary condition at the 
entrance surface, z = 0 ,  is satisfied by setting e ~ = 
C~d ~*. Note that we ignore absorption, as we are only 
interested in the positions of the features, not their 
relative intensities. Although there are higher-order 
Laue-zone (HOLZ) deficiency lines in Fig. 1, they are 
not of interest here and are neglected in our theory. 

2. Numerical simulation of LACBED patterns 

As always when approximations are used, it is useful 
to have a reliable more exact theory with which to 
compare results. We therefore simulate the patterns 
of Fig. 1 by solving the many-beam equations (4). 
The diffracted amplitudes at the exit face of a perfect 
transmission specimen in the symmetric Laue geom- 
etry, as a function of the two-dimensional orienta- 
tion K, are given by 

AG(K,t) = Y.C~*(K)C(~(K) exp ( -  isO~t/Zk), (5) 

where t is the specimen thickness. Since in a bright- 
field pattern only the component G = 0 is of interest, 
the diffracted intensity at any orientation K is 

= y lc(o,)c,g l 2 cos [(s(0-  sO~)(t/2k)]. (6) 
i , j  

The cosine term in the second of these expressions is 
an interference term and is responsible for the fringes 
seen parallel to and either side of the main diffrac- 
tion lines. For the purposes of finding only the 
positions of these main lines, the time-consuming 
double summation is unnecessary. We set i= j  so 

Io(K)-'- ZIC~)(K)I 4, (7) 
J 

independent of the specimen thickness. Fig. 2 shows 
simulated LACBED bright-field intensities, using (7), 
for the same materials and regions as the experimen- 

(al 

k 

x . 

(b) 

\ 
\ \ 

Fig. 2. Simulated bright-field intensities close to (a) the Pt[231] 
zone axis and (b) the GaAs[116] zone axis at 200 kV. See text 
for details. 
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tal patterns of Fig. 1. In both cases, the orientation 
scan is for - 4 ___ Ky ___ 4 A -  1 vertically and 1 _< Kx -< 
9 A -~ horizontally. As a guide to the area of the 
reciprocal lattice covered by these scans, G~l~ = 
2.77 .~-~ in platinum and G=o = 3.15 A-~ in GaAs. 
About 40 or 50 beams are included in the many- 
beam expansion. In both simulations, the intensity is 
scaled to cover the range [0, 1] to highlight the 
contrast between the deficit lines of interest and the 
background. There is clear agreement between 
experiment and computed simulation in terms of the 
positions of the major features, which we emphasize 
again are the sole concern of this paper. Having 
achieved this agreement, we now have a 'perfect 
experiment' with which to compare the approxi- 
mations that follow. (Note that we can tell which 
lines in the experiment are HOLZ lines by compari- 
son of Figs. 1 and 2.) 

3. A perturbative 'two-rod' theory in transmission 

Much of the physics of surface resonance associated 
with parabolas in RHEED patterns can be extracted 
using two-rod theory (e.g. McRae, 1979). The 'rods' 
are the result of loss of symmetry in the direction 
normal to the surface. If it is assumed that the 
RHEED electrons do not penetrate the bulk of the 
specimen, these rods are totally featureless along 
their length. The much-discussed phenomenon of 
surface resonance is then associated with inter-rod 
scattering from the zeroth rod into a bound state of 
some other rod (e.g. Marten & Meyer-Ehmsen, 1985; 
Bird, 1987). 

Essentially, we mimic two-rod theory for the 
transmission case. It should be stressed immediately, 
however, that what follows is in no way an analysis 
of RHEED itself, which is by its nature a rather 
different scattering problem to THEED. For 
instance, in RHEED,  the features of interest are seen 
when electrons are scattered out of states travelling 
parallel, or nearly parallel, to the surface; in bright- 
field LACBED patterns, the deficiency lines occur 
when flux is removed into some other state. None- 
theless, we do believe that the geometrical interpreta- 
tion of the LACBED patterns will be of use in the 
RHEED problem. 

The equivalent of the rod is a systematic row, 
which in Figs. 1 and 2 runs horizontally. We choose 
to call this the x direction (and the Kx direction, since 
we assume cubic symmetry), so the y direction (and 
Ky) runs from bottom to top. Unlike a rod, a 
systematic row is not continuous in reciprocal space, 
since there must be conservation of crystal 
momentum in the Kx direction; the rows simply 
consist of linear sets of reciprocal-lattice points (Fig. 
3). As in RHEED two-rod theory, the basis states for 

expansion are the states of the zeroth row potential 
and the coupling between rows is treated as a pertur- 
bation. This rather artificial separation into scat- 
tering along the rows, which may be strong, and 
scattering between the rows, which is assumed to be 
weak, clearly ignores the dynamical effects of other 
sets of systematic rows. Such effects are minimized 
by choosing zone axes where the 'surface' systematic 
rows give the strongest diffraction and are further 
reduced by the fact that the patterns are tilted up the 
systematic row of interest, so it is unlikely that a 
significant portion of any other ZOLZ row will be 
excited. This tilting provides the analogue of the 
glancing-angle incidence required in reflection dif- 
fraction. The formation of a bright-field LACBED 
pattern may then be depicted in terms of an incident 
plane wave with large K 2 = K,2 + K~ z, (since we are at 
comparatively large angles from the zone axis, 
K = 0), being scattered into and out of other systema- 
tic row states. 

As the potential is to be split into systematic row 
contributions, it is convenient to write the starting 
diffraction equation, (1), as 

[ -  V~ + Uo(x)+ U(x,y)]@(x,y,z)= 2ikO@/Oz, (8) 

where - V~ + Uo(x) is the unperturbed Hamiltonian. 
This goes further than the original projection 
approximation in splitting the problem into x, y and 
z components. The eigenstates of the unperturbed 
Hamiltonian are q~0 and the perturbation is 

U(x,y)= ~" U<(x)exp(iG.~y), (9a) 
G~ sO 

where 
b 

U<(x)=(1/b)fdyU(x,y)exp(-iG, .y) .  (9b) 
0 

b is the crystal repeat unit in the y direction. Note 
that, since U(x,y) is already projected in z, the 

+A 

Gx 

• H 

-- • Gy=0 

-- ~ -H 

Y x 

1, 

Fig. 3. Schematic showing and defining the sense of  the offset A 
between reciprocal-lattice systematic rows. The black dots are 
individual reciprocal-lattice points. 



R. JAMES, D. M. BIRD A N D  A. G. W R I G H T  361 

potential Uo(x) in (9a) is the full scattering potential 
projected in both y and z. Uo(x) therefore depends 
only on x, so (8) is now separable into x, y and z 
components, rather than just R and z. We may then 
write q,0 = q,'(x)Y(y)Z(z). The z dependence is 
already taken care of in (1) and we now assume that 
the y dependence, giving inter-row scattering, is weak 
and well described as a plane wave. Thus, 

Z(z) = exp(-is~J~z/2k); Y(y) = exp(iKyy). (10) 

The aP(x) are Bloch states of the one-dimensional 
zeroth systematic row, satisfying 

[ _  ~_5x2 + d 2  go(x)]grO~(x,Kx) = o-(J~(Kx) grO~(x, Kx), 

(11) 

where the one-dimensional energy eigenvalues o "~J~ of 
qAJ~ are related to the two-dimensional eigenvalues 
s °~ of qbo~, defined by (3a), via 

s(g3(Kx,Ky) = o'03(Kx) + Ky 2, (12) 

since the eigenvalue of Y(y) is K 2. Denoting the 
excitation amplitude of each one-dimensional Bloch 
state by e(S~(Kx), the unperturbed eigenstates are 

O0 = Ze(J)(Kx) g'°)(x,Kx) exp (iKyy) 
J 

x exp [ (iz/2k)(o.(j) + 2 - K y ) ] .  (13) 

These states of the zeroth row are responsible for the 
'surface parallel' Bragg lines running horizontally 
across the patterns. As we are interested in large 
angles of incidence, the incident state 0") can be 
taken, to a first approximation, to have a plane-wave 
x dependence, with tr (s~ = K 2. qSo is then entirely 
plane-wave-like. In general, the states into which the 
incident electrons couple will not have a plane-wave 
x dependence. 

The basis states qSo may now be perturbed by the 
potential U(x,y), which will transform Ky by a Gy 
and cause intra-row scattering between branches (j) 
with an amplitude that must be depth dependent. 
This analysis is entirely analogous to that of the 
time-dependent perturbation theory of the 
Schr6dinger equation - see, for example, Schiff 
(1968). The perturbed wave function is therefore 

O =  X aj.G,(z) g '~  exp [i(Ky + Gv)y] 
j, Gr 

x exp{-(iz/Zk)[~r(s~+(Ky+Gy)2]} (14) 

with boundary conditions aj.o(O)= e~J~6o.G, deter- 
mined by comparison of (13) a~cl (14)• No te tha t ,  if 
the projected reciprocal lattice around the axis of 
interest is not rectangular, then a perpendicular tran- 
sition between rods will not satisfy conservation of 
crystal momentum K~-'Kx + G:,. In this case, the 
eigenvalue on rows Gy = +-H into which electrons 

couple is related to the eigenvalue on rod 0 via 

O'~H = o'/d~(Kx -W A), (15) 

where A is the offset between rods 0 and H, as 
defined in Fig. 3. The inclusion of this offset is 
largely a matter of book-keeping; since it only 
lengthens the equations yet further, it will be omitted 
until needed• Note that such an offset applies to the 
labelling of eigenstates as well as eigenvalues. 

The wavefunction (14) may now be substituted 
into the starting equation (8). We multiply to the left 
by an orthogonal wave function q~"~*(x)exp [ -  i(Ky 
+ Gy')] and integrate over a projected unit cell to 
yield 

= 1 Z Z 
dz ZIK j G;.~G,. 

× exp {(iz/2k)[o "c'~- o "u') + (Ky + Cry) 2 

- ( K y  + Gy)2]}. (16) 

The x-dependent matrix element in this equation 
contains most of the physics of the problem; it is this 
term that governs the strength of inter-row transi- 
tions and from which Kx conservation arises 
[expressed in (15)]. Although the states q~s~ and gtu') 
will both be Bloch states of the zeroth-row potential, 
the matrix element may be thought of as describing 
the transfer of flux from a Bloch state on one row to 
a different state on another r o w  Gy - G/away, with a 
strength given by the inter-row potential UG.-O;. In 
order to explain the geometry of Figs. 1 and 2~, only 0 
and H need be included as possible values of Gy and 
Gy. To keep the size of the equations manageable, it 
is convenient to write 

~r °~ - ~r ~J') - 2 K y H -  H 2 = $'2 )j ' ,  (17)  

though care must be taken to ensure that the order- 
ing of the labels ( j )  and ( j ' )  is kept absolutely 
consistent. The resulting two-row equations are (OHz  

daj.0_ 1 Eaf.H(ttF(J3[U_Hlq.rtj,,)xeXp i 2k ] 
dz 2ik j, 

(18a) 

and 

d a j ,  , H  

dz 

• s2JJ'z~ 
l ~aj.o(g'tJ")[UH[gt'S~)xeXp(--l--~]. 

2ik 

(18b) 

These are exact ' two-rod' equations for the transmis- 
sion case. The amplitude coefficients a may be split 
up into orders a (") in precisely the same way as for 
normal time-dependent perturbation theory. The 
zeroth-order terms are the initial confitions, a}°a) (0) 
= e(J)6o c .  Since there is no incident excitation onto • ,. • 

row H (incident electrons are not diffracted until 
they hit the crystal), the first-order term on row 0 is 
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zero. Thus, to see any intensity change in the bright 
field, we must find the second-order terms. [This is 
nothing new. The same point has been made many 
times before; kinematic diffraction theory and 
HOLZ theory (e.g. Bird, 1989) are but two 
examples.] They are 

a)~(t) = ~ eu")(~°q u_ HI 
JT" 

x (1//T'7)((1/OJJ")[exp (iOJ/t/2k) - 1 ] 

_ 1 a.o,,){exp [/(a "u)-  o-O"))t] 
~rU)- k ~-k" j -  1}). 

(19) 

This expression has a simple physical interpretation. 
We start with incident electrons in some state (j") on 
row 0; scatter via the potential U/+ into a state ( j ' )  on 
row H and back via U_ n to state (j)  on row 0. The 
magnitude of the scattered amplitude is basically 
determined by the incident excitation gJ"> and the 
two matrix elements. The rest of the expression is a 
shape function, familiar in all diffraction theory; it 
determines the positions of diffracted features, their 
subsidiary fringes and so on. a+(.~ represents the first 
term in the perturbation expansion that removes flux 
from the bright-field beam. The loss is maximized 
along the loci of deficiency lines; this occurs for j = j "  
(that is, the electrons return to the same state they 
started in) and g2 H =  0. Since the terms in /2 jj' are 
not necessarily plane-wave-like, the condit ion/2 g '  = 
0, which is the crux of our geometrical interpretation 
of these patterns, is not a simple Bragg condition. 
Instead, it is a modified Bragg condition, in which the 
one-dimensional Bloch-state eigenvalues o- play an 
important r61e. 

4. Branch-by-branch simulation of LACBED patterns 

By analogy with the usual (plane-wave) Bragg condi- 
tion, we deduce that the geometry of off-axis 
LACBED patterns can be found by mapping out the 
loci of the orientations (K~, K>.) that satisfy the 
modified Bragg condition ~ J J ' = 0 .  This may be 
achieved directly and simply by assuming the starting 
(and hence finishing) state to be the plane wave ~ / )  
= exp (iKxx), with eigenvalue ~r (j) = K.~. As already 
mentioned, this assumption is valid because the angle 
of incidence (measured from the zone axis) is com- 
paratively large - coupling may still occur into 
strongly diffracting states on row H. Note that, with 
the initial state chosen to be a plane wave, the 
vertical Bragg lines corresponding to the systematic 
row reflections Gx will not be simulated. These would 
only appear if the state gto) were expressed as the 
sum of at least two plane waves. 

The equations to be solved for the line positions 
(Kx, Ky) in this case, then, may be found by setting 
(17) to zero (the exact modified Bragg condition) and 
reintroducing (15). To produce the two parabolas in 
each pattern, rows + H and - H  must both be used, 
SO 

KZxW2KyH-H2-o'U')(Kx-T-A)=O. (20) 

This equation bears a striking resemblance to the 
expressions derived for the resonance parabolas in 
RHEED [especially those by Bird (1987)], apart 
from some rather important physical considerations. 
In transmission, Kx is a good quantum number for 
the eigenvalues o-O'); there is a shift A between 
neighbouring rod potentials (unnecessary in RHEED 
if the rods are truly featureless) and there is no need 
to include a mean inner potential, U. The latter must 
be included in any RHEED calculation since, unlike 
in the symmetric Laue transmission case, the path- 
length through the crystal is not even approximately 
the same for each electron. 

The most illuminating type of LACBED pattern 
to simulate is one taken from the surface of a strong 
scatterer (since the features to be discussed are then 
both prominent and distinct) and one in which the 
offset A is nonzero. Both requirements are satisfied 
by the Pt[231] pattern in Fig. 1. The reason for 
choosing such a pole is that, with A=0 ,  (20) must 
necessarily produce a pattern with mirror symmetry 
about K,. = 0. The only way to avoid the effects of A 
for an asymmetric pole is to have no variation of the 
energy ~r ~') with Kx. This may be achieved in 
THEED only by coupling into a completely flat band 
of the one-dimensional dispersion curve, because of 
the requirements of momentum conservation. In 
other words, the degree of mirror symmetry about 
K>. = 0 is a measure of momentum conservation. 

Fig. 4 shows the first seven branches of the disper- 
sion surface of the P t ( l l l )  systematic row, from an 
eleven-beam numerical calculation. The number of 
beams used is consistent with the number used in the 
two-dimensional LACBED simulations of §2. The 
most notable feature of this figure is that the first 
branch is extremely flat and well split off from the 
other branches. Note the use of symbols to distin- 
guish each branch - the same symbols denote the 
same j '  label throughout the rest of the paper. The 
values of cr<+")(K,. ) from this calculation may be 
inserted numerically and branch by branch into (20), 
which is then solved for K,. as a function of K,-, using 
the appropriate value of H for the particular pole. 
The loci (Kx, K,.) satisfying (20) are plotted in Fig. 5 
for the same region close to the Pt[231] pole as 
simulated before. Apart from the expected absence 
of the 'surface-parallel' (n~n)-type lines, these simu- 
lations bear a strong resemblance to both the experi- 
mental and theoretical patterns of Figs. 1 and 2. 
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Each line in Fig. 5 is in exactly the same posit ion as 
in the full dynamical  simulation of  Fig. 2. The 
conclusion to be drawn here is clearly that,  for a 
strong scatterer such as plat inum, the L A C B E D  
diffraction geometry may be unders tood in terms of  
a perturbat ive two-row branch-by-branch analysis. 

In particular,  it is concluded that  the innei" smooth  
parabolas  may  be generated entirely from branch-1 
contributions;  note that  this is the only fiat band and 
the resulting parabolas  are the only features that  are 
smooth and symmetrical  about  Ky=0 .  In addit ion,  
the envelope of  the parabolas  is seen to be a product  
of  branch 2. This is also a strongly dynamical  branch 
in the Pt(1T1) systematic row. It cannot ,  therefore, be 
assumed that  such envelopes are normal  Kikuchi 
lines, mapping  plane-wave Bragg conditions. Instead, 
the envelopes are the loci of  orientat ions satisfying 
the dynamically modified Bragg condit ion for branch 
2. The higher branches become progressively weaker, 
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Fig. 4. The first seven branches of the dispersion surface of the 

Pt(lil) systematic row at 200 kV. The vertical axis shows the 
one-dimensional energy o', measured in A -~ relative to the 
mean inner potential. The horizontal axis shows K+ in units 
of Gx. 

displaying approximate ly  parabol ic  dispersion and 
giving rise to straight lines in the diffraction pat tern  
at normal  Bragg positions. Such features can only 
arise in any diffraction pat tern if the real-space 
potential  is periodic, in which case the reciprocal 
space is periodic a n d / i x  must  be conserved to within 
a Gx. 

How do these arguments  become changed for 
weaker scatterers? Fig. 6 shows the first seven 
branches of  the GaAs(220) systematic row dispersion 
curve, and the corresponding [116] branch-by-  
branch simulation. The symbols again have the same 
meaning as for the plat inum case. It is clear here 
that, since the first branch is not quite flat, the inner 
curve is not  quite parabolic  and that,  apar t  from the 
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dynamical rearrangement of  branches 1 and 2, the 
whole pattern consists o f  straight lines, characteristic 
o f  a nearly-free electron branch structure. As may be 

expected, the dynamica l  effects exhibi ted by b ranches  
1 and  2 become weaker  for mater ia ls  con ta in ing  
l ighter elements.  
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To cement the notion of a dynamically modified 
Bragg condition, it is instructive to solve (20) for a 
system in which the scattering potential is systema- 
tically switched off. Fig. 7 is a series of two-row 
branch-by-branch simulations of the [231] pole 
LACBED patterns, in which the strength of the 
scattering potential in the (1]-1) systematic row is 
artificially set to various fractions of the 'true' 
potential for platinum. Thus, the first plot (which is 
the same as Fig. 5) simulates the full platinum 
potential and the last gives the type of pattern 
expected from an imagined scatterer with the same 
structure as platinum but 100 times weaker. The 
dispersion surface produced by this latter potential is 
virtually free-electron-like so the lines in the simu- 
lation are all in their kinematic positions. The points 
to observe from Fig. 7 as the potential is increased 
are as follows. 

(i) The position of the branch-1 contribution 
moves away from the branch-2 envelope and 
becomes smoother and more parabolic. 

(ii) The branch-2 envelope itself changes shape, 
producing a different set of straight-line segments to 
those seen at 'zero' potential. 

(iii) The other lines remain straight and approxi- 
mately in their kinematic positions. The slight 
adjustment to this at large potentials is that, close to 
the left edge of the plots, where the dynamical effects 
are strongest and where two-row theory is most 
likely to break down, the lines are shifted slightly. 
Each then makes a slightly different angle with the 
vertical than at zero potential. 

These observations may also be made by reducing 
the potential in the full two-dimensional LACBED 
simulations described in §2. Such calculations con- 
firm that the results we have deduced from pertur- 
bation theory are indeed correct. In addition, they 
suggest that the surface-parallel Bragg lines (n-~n) 
also remain in approximately the same place 
(especially for large n), regardless of the strength of 
the potential, as would be expected. 

5. Discussion and concluding remarks 

So far, we have shown that a modified Bragg condi- 
tion, taking into account dynamical scattering in one 
dimension (the systematic row direction), can 
account unequivocally for the positions of deficiency 
features in bright-field LACBED patterns. The result 
has been extracted from the mathematical descrip- 
tion of the problem using perturbation theory but, as 
with normal Bragg diffraction, the geometry may 
also be understood in terms of energy and 
momentum conservation. 

Energy conservation is expressed through (20) - it 
is the dynamically modified equivalent of the Laue 
condition K 2= (K_+H) 2. We have, of course, only 

considered elastic scattering of incident electrons. 
The more interesting conservation is that of 
momentum, expressed through (15). As already men- 
tioned, both Kx and Ky are good quantum numbers 
in transmission and must each be conserved to 
within a reciprocal-lattice vector. K,. is automatically 
conserved by splitting the problem into systematic 
rows but, to guarantee Kx conservation, we must 
introduce the offset A. Because of the constraint of 
conservation of momentum, the loci of plane-wave 
Bragg conditions must be straight lines. As the dis- 
persion of the branches becomes less parabolic (i.e. 
less like a plane-wave disperson), the lines become 
less straight. In the extreme limit of a completely 
dispersionless band (such as j =  1 in the platinum 
case above), ~r ~j) does not vary with K~ and the locus 
is a completely smooth parabola. Although we know 
that K~ conservation must be obeyed in the for- 
mation of the parabola, we would have seen exactly 
the same shape if it were not obeyed. At a zone axis 
with nonzero A, the parabolas are then the only 
features from the two rows Gy = _ H  displaying 
mirror symmetry about Ky = 0. 

This way of thinking of the problem offers an 
interesting analogy with RHEED. Since the features 
in convergent-beam RHEED patterns are so similar 
to those discussed in this paper, they invite interpre- 
tation in terms of energy and momentum conser- 
vation via a modified Bragg condition. Though the 
source of the smooth parabolas is well documented 
[see earlier references, plus Gajdardziska-Josifovska 
& Cowley (1991)], a complete explanation of all the 
lines, including the straight ones, has never been 
given. Though RHEED is a different problem to 
THEED and additional features (such as absorption) 
must be included in its analysis, we believe the work 
presented here gives a solid base from which to start. 
The existence of straight lines (including the surface- 
parallel ones) and a definite lack of mirror symmetry 
about Ky=O seen in CB-RHEED patterns suggest 
that the rods are not featureless along their length 
and that sufficient bulk is being penetrated to require 
at least some degree of Kx conservation. This point 
and others are addressed and expanded upon in a 
separate paper (James, Bird & Wright, 1994). 
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Abstract 
A new projection description for a cubic quasiperi- 
odic crystal (CQC), including a projection matrix, 
diffraction-intensity calculation and a linear phason 
matrix, has been proposed. The simulated electron 
diffraction patterns with appropriate phason param- 
eters agree well with the experimental ones obtained 
for a rapidly solidified V6Nil6Si7 alloy. The transition 
from the CQC to its crystalline approximants is 
treated using the linear-phason-strain concept. 

1. Introduction 
Since the discovery of the icosahedral quasicrystal 
(IQC) in A1-Mn alloys (Shechtman, Blech, Gratias & 
Cahn, 1984), other quasiperiodic crystal (QCs) have 
been reported, such as the decagonal (Bendersky, 
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1985), dodecagonal (Ishimasa, Nissen & Fukano, 
1985) and octagonal (Wang, Chen & Kuo, 1987) 
phases. All these quasiperiodic crystals have noncrys- 
tallographic point symmetries and can be described 
with quasiperiodic (QP) tilings projected from a 
higher-dimensional periodic lattice. However, it is 
possible to construct QP tilings of crystallo- 
graphically permissible orientational symmetries. For 
example, Baranidharan, Balagurusamy, Srinivasan, 
Gopal & Sasisekharan (1989) constructed a QP tiling 
with fourfold symmetry and Kulkarni (1989) gener- 
ated a two-dimensional (2D) QP structure belonging 
to the 4mm point-symmetry group using a modified 
strip-projection method. This QP structure was inter- 
preted as a superlattice structure of the face-centred- 
cubic disordered Ni-Mo alloy. 

Recently, Janssen (1992) deduced symmetry opera- 
tions of all possible two- and three-dimensional QP 
structures of rank 4, 5 or 6, including both noncrys- 
tallographic point symmetries such as five-, eight-, 
ten- and twelvefold symmetries and crystallographic 
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